Calculus 1C: Coordinate Systems & Infinite Series

How did Newton describe the orbits of the planets? To do this, he created calculus. But he used a different coordinate system more appropriate for planetary motion. We will learn to shift our perspective to do calculus with parameterized curves and polar coordinates. And then we will dive deep into exploring the infinite to gain a deeper understanding and powerful descriptions of functions. How does a computer make accurate computations? Absolute precision does not exist in the real world, and computers cannot handle infinitesimals or infinity. Fortunately, just as we approximate numbers using the decimal system, we can approximate functions using series of much simpler functions. These approximations provide a powerful framework for scientific computing and still give highly accurate results. They allow us to solve all sorts of engineering problems based on models of our world represented in the language of calculus. Changing Perspectives Parametric Equations Polar Coordinates Series and Polynomial Approximations Series and Convergence Taylor Series and Power Series The three modules in this series are being offered as an XSeries on edX. Please visit Single Variable Calculus XSeries Program Page to learn more and to enroll in the modules.This course, in combination with Parts 1 and 2, covers the AP* Calculus BC curriculum. Learn more about our High School and AP* Exam Preparation Courses   This course was funded in part by the Wertheimer Fund. *Advanced Placement and AP are registered trademarks of the College Board, which was not involved in the production of, and does not endorse, these offerings.

Created by: Massachusetts Institute of Technology

Level: Intermediate

Find Out More
Share
Facebook
Twitter
Pinterest
Reddit
StumbleUpon
LinkedIn
Email

Montclair State Online Courses

Back to Top

Log In

Contact Us

Upload An Image

Please select an image to upload
Note: must be in .png, .gif or .jpg format
OR
Provide URL where image can be downloaded
Note: must be in .png, .gif or .jpg format

By clicking this button,
you agree to the terms of use

By clicking "Create Alert" I agree to the Uloop Terms of Use.

Image not available.

Add a Photo

Please select a photo to upload
Note: must be in .png, .gif or .jpg format